본문 바로가기 대메뉴 바로가기

논문

전체
Model selection and parameter estimation using the iterative smoothing method
  • 구한울; Arman Shafieloo; Ryan Keeley; 외
  • 2021-03-12
  • JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS 2021 March : 034-1~034-12
We compute the distribution of likelihoods from the non-parametric iterative smoothing method over a set of mock Pantheon-like type Ia supernova datasets. We use this likelihood distribution to test whether typical dark energy models are consistent with the data and to perform parameter estimation. In this approach, the consistency of a model and the data is determined without the need for comparison with another alternative model. Simulating future WFIRST-like data, we study type II errors and show how confidently we can distinguish different dark energy models using this non-parametric approach.